Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22282030

RESUMO

Coronavirus disease 2019 (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), remains a global public health emergency. Although SARS-CoV-2 is primarily a respiratory pathogen, extra-respiratory organs, including the central nervous system (CNS), can also be affected. Neurologic symptoms have been observed not only during acute SARS-CoV-2 infection, but also at distance from respiratory disease, also known as long-COVID or neurological post-acute sequelae of COVID-19 (neuroPASC). The pathogenesis of neuroPASC is not well understood, but hypotheses include SARS-CoV-2-induced immune dysfunctions, hormonal dysregulations, and persistence of SARS-CoV-2 reservoirs. In this study, we used a high throughput systems serology approach to dissect the humoral response to SARS-CoV-2 (and other common Coronaviruses - 229E, HKU1, NL63, OC43) in the serum and cerebrospinal fluid (CSF) from 112 infected individuals who developed or did not develop neuroPASC. Unique SARS-CoV-2 humoral profiles were observed in the CSF of neuroPASC. All antibody isotypes (IgA, IgM, IgA) and subclasses (IgA1-2; IgG1-4) were detected in serum, whereas CSF was characterized by focused IgG1 (and absence of IgM). These data argue in favor of compartmentalized brain-specific responses against SARS-CoV-2 through selective transfer of antibodies from the serum to the CSF across the blood-brain-barrier, rather than intrathecal synthesis, where more diversity in antibody classes/subclasses would be expected. Moreover, compared to individuals who did not develop post-acute neurological complications following infection (n=94), those with neuroPASC (n=18) exhibited attenuated systemic antibody responses against SARS-CoV-2, characterized by decreased capacity to activate antibody-dependent complement deposition (ADCD), NK cell activation (ADNKA) and to bind Fc{gamma} receptors. However, surprisingly, neuroPASC showed significantly expanded antibody responses to other common Coronaviruses, including 229E, HKU1, NL63, and OC43. This biased humoral activation across coronaviruses was particularly enriched in neuroPASC individuals with poor outcome, suggesting an original antigenic sin (or immunologic imprinting), where pre-existing immune responses against related viruses shape the response to current infection, as a key prognostic marker of neuroPASC disease. Overall, these findings point to a pathogenic role for compromised anti-SARS-CoV-2 responses in the CSF, likely resulting in incomplete virus clearance from the brain and persistent neuroinflammation, in the development of post-acute neurologic complications of SARS-CoV-2 infection.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21264250

RESUMO

Although vaccines effectively prevent COVID-19 in healthy individuals, they appear less immunogenic in individuals with chronic inflammatory diseases (CID) and/or under chronic immunosuppression, and there is uncertainty of their activity against emerging variants of concern in this population. Here, we assessed a cohort of 74 CID patients treated as monotherapy with chronic immunosuppressive drugs for functional antibody responses in serum against historical and variant SARS-CoV-2 viruses after immunization with Pfizer mRNA BNT162b2 vaccine. Longitudinal analysis showed the greatest reductions in neutralizing antibodies and Fc effector function capacity in individuals treated with TNF- inhibitors, and this pattern appeared worse against the B.1.617.2 Delta virus. Within five months of vaccination, serum neutralizing titers of the majority of CID patients fell below the presumed threshold correlate for antibody-mediated protection. Thus, further vaccine boosting or administration of long-acting prophylaxis (e.g., monoclonal antibodies) likely will be required to prevent SARS-CoV-2 infection in this susceptible population.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-443267

RESUMO

SARS-CoV-2 variants that attenuate antibody neutralization could jeopardize vaccine efficacy and the end of the COVID-19 pandemic. We recently reported the protective activity of a single-dose intranasally-administered spike protein-based chimpanzee adenovirus-vectored vaccine (ChAd-SARS-CoV-2-S) in animals, which has advanced to human trials. Here, we assessed its durability, dose-response, and cross-protective activity in mice. A single intranasal dose of ChAd-SARS-CoV-2-S induced durably high neutralizing and Fc effector antibody responses in serum and S-specific IgG and IgA secreting long-lived plasma cells in the bone marrow. Protection against a historical SARS-CoV-2 strain was observed across a 100-fold vaccine dose range and over a 200-day period. At 6 weeks or 9 months after vaccination, serum antibodies neutralized SARS-CoV-2 strains with B.1.351 and B.1.1.28 spike proteins and conferred almost complete protection in the upper and lower respiratory tracts after challenge. Thus, in mice, intranasal immunization with ChAd-SARS-CoV-2-S provides durable protection against historical and emerging SARS-CoV-2 strains.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-429759

RESUMO

Recently approved vaccines have already shown remarkable protection in limiting SARS-CoV-2 associated disease. However, immunologic mechanism(s) of protection, as well as how boosting alters immunity to wildtype and newly emerging strains, remain incompletely understood. Here we deeply profiled the humoral immune response in a cohort of non-human primates immunized with a stable recombinant full-length SARS-CoV-2 spike (S) glycoprotein (NVX-CoV2373) at two dose levels, administered as a single or two-dose regimen with a saponin-based adjuvant Matrix-M. While antigen dose had some effect on Fc-effector profiles, both antigen dose and boosting significantly altered overall titers, neutralization and Fc-effector profiles, driving unique vaccine-induced antibody fingerprints. Combined differences in antibody effector functions and neutralization were strongly associated with distinct levels of protection in the upper and lower respiratory tract, pointing to the presence of combined, but distinct, compartment-specific neutralization and Fc-mechanisms as key determinants of protective immunity against infection. Moreover, NVX-CoV2373 elicited antibodies functionally target emerging SARS-CoV-2 variants, collectively pointing to the critical collaborative role for Fab and Fc in driving maximal protection against SARS-CoV-2. Collectively, the data presented here suggest that a single dose may prevent disease, but that two doses may be essential to block further transmission of SARS-CoV-2 and emerging variants. HighlightsO_LINVX-CoV2373 subunit vaccine elicits receptor blocking, virus neutralizing antibodies, and Fc-effector functional antibodies. C_LIO_LIThe vaccine protects against respiratory tract infection and virus shedding in non-human primates (NHPs). C_LIO_LIBoth neutralizing and Fc-effector functions contribute to protection, potentially through different mechanisms in the upper and lower respiratory tract. C_LIO_LIBoth macaque and human vaccine-induced antibodies exhibit altered Fc-receptor binding to emerging mutants. C_LI

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...